
Work in Progress: KDBench - towards open source
benchmarks for measurement-based multicore

WCET estimators
Marwan Wehaiba El Khazen∗ †, Kevin Zagalo∗, Hadrien Clarke∗, Mehdi Mezouak∗, Yasmina Abdeddaı̈m‡ ∗,

Avner Bar-Hen§ ∗, Slim Ben Amor†, Rihab Bennour†, Adriana Gogonel†, Kossivi Kougblenou†,
Yves Sorel∗ and Liliana Cucu-Grosjean∗

∗Inria, France, Email: firstname.lastname@inria.fr
†StatInf, France, Email: firstname.lastname@statinf.fr

‡UGE, ESIEE, France, Email: firstname.lastname@esiee.fr
§CNAM, France, Email: firstname.lastname@cnam.fr

Abstract—The real-time systems community is facing the
lack of benchmarks adapted to measurement-based worst-case
execution time (WCET) estimators. We provide in this paper first
steps towards such benchmarks by proposing them for single core
microcontrollers, while we leave as future work the migration to
multicore microcontrollers. The considered benchmarks are the
programs of an open source drone autopilot. We conclude the
paper by underlining the main difficulties of such migration.

Index Terms—measurement-based WCET estimation, bench-
marks

I. MOTIVATION AND DEFINITIONS

The real-time community is facing the lack of benchmarks
adapted to measurement-based analyses. Existing benchmarks
for the estimation of WCET [1]–[3] have been proposed to
estimate WCETs mainly for static analyses. They contain
simple programs that are not accompanied by a measurement
protocol. They do not take into account functional dependen-
cies between several benchmarks like those due to shared
global variables which, of course, may influence their exe-
cution times. On the other hand, measurement-based analyses
require execution times measured while executing programs
on microcontrollers, similar to those used in the embedded
systems industry.

Our contribution is the proposition of measurement-based
benchmarks, KDBench, for real-time embedded systems1.
More formally, we understand by measurement-based bench-
marks a 4-uple (A, p, M, c(A)) composed by a program
A, a microcontroller p, a measurement protocol M and an
ordered sequence of execution times c(A). For the program
A, one may provide the source code as well as the binary
code. A measurement protocol M may be defined by the
variation of the input variables (associated to sensors) of these
benchmarks. In our case, the variation of the input variables
is obtained by collecting them during a simulated flight. The

This research is partially funded by the FR PSPC STARTREC and the FR
Inria ADT grant KDBench.

1All information related to these benchmarks are available at https://team.
inria.fr/kopernic/kdbench

fourth component, the ordered set of execution times, c(A)
is proposed to overcome the difficulty of the reproducibility
of results [4] while comparing execution times measured for
the same program on slightly different microcontroller config-
urations. Moreover, we provide these measurements by using
information collected at the scheduler level, thus the impact of
the measurement protocol is negligible on the variation of mea-
sured execution times. Last, but not least this fourth component
improves the access of our community to hardware-in-the-loop
(HitL) benchmarks. We understand by HitL that the execution
of the benchmarks is done on a microcontroller while sensors
and actuators of a considered cyber-physical system (CPS),
as well as its physical environment, are simulated. Indeed,
our community does not often provide numerical results for
programs executed on microcontrollers because of the impor-
tant effort of implementation required for such execution, or
the lack of access to these processors. This may prevent the
community in proposing realistic models describing the impact
of existing microntrollers and thus propose results that may
be not realistic w.r.t. the microntrollers used by the real-time
industry.

The ROSACE case study [5] contains the closest benchmark
programs w.r.t our following objectives: open-source and ex-
ecutable on multicore processors. Nevertheless, to the best of
our knowledge, the ROSACE programs are not implemented
on a processor hosted on a board with sensors and actuators.
In order to complete our benchmark proposal, we would like
to provide to users the variation of input variables as well
as output variables of programs. The PX4 autopilot programs
fulfill this requirement, without an expected important devel-
opment effort from our side. Indeed, the PX4 programs are
proposed after testing their implementation w.r.t real flights
implying that stable configurations of periods exist.

With respect to the WCET estimation problem, we con-
sider in this paper statistical estimators to illustrate the
measurement-based WCET analyses, but one may use any
existing measurement-based or hybrid WCET analysis [6].

The paper is organized as follows. We describe in Sec-



tion II the open source programs of a drone autopilot that we
have considered as target for measurement-based benchmarks.
Their transformation in benchmarks for real-time embedded
systems is described in Section III. In Section IV we present
first results on the single core benchmarks, while our target
multicore benchmarks are presented as future work in Sec-
tion V.

II. DRONE AUTOPILOT PX4 LIMITATIONS FOR A DIRECT
USE AS BENCHMARK FOR WCET ESTIMATORS

The PX4 autopilot is an open source flight control software
[7] designed by ETH Zurich. PX4 runs on top of NuttX, a
Unix-like OS developed by Gregory Nutt [8] or on top of
Linux, both compliant with POSIX.

The PX4 program is written in C++ and contains two
main parts. The PX4 Middleware provides an infrastructure
for internal communications among all programs, called mod-
ules afterward, via the micro Object Request Broker, called
uORB, using a publish/subscribe mechanism, and for external
communications between PX4 and offboards applications like
the ground control station (GCS) using the standard proto-
col MAVLink [9]. The PX4 Flight Stack contains a lot of
modules implementing drivers, control algorithms, filters, etc.,
for manual and autonomous flight missions. In addition with
the POSIX compliance, all these features are a pledge for
the portability of PX4. Each module is a NuttX task started
at the beginning of the PX4 program. It is composed of
an infinite loop which performs the following sequence of
actions: subscribe to one or more topics via uORB, wait for
new data produced by other modules using a poll function
(blocking wait), read data from corresponding topics via uORB
when they are available, compute data of the module and,
finally, publish the resulting data to uORB. Actually, the Flight
Stack is a data precedence graph where modules are vertices
of the graph and their data precedence relations are edges of
the graph, starting from the hardware sensors which are inputs
of the autopilot down to the motors which are outputs of the
autopilot. The modules read data from sensors, estimate the
position and the attitude using a Kalman filter (EKF2), control
the position (Position) and the attitude (Attitude) of the drone,
handle the navigation (Navigator), manage the state of the
drone (Commander), and write data to actuators, i.e., motors.
Every module waits for data produced by the previous modules
to which it is related to, according to the data precedence graph
of modules and, thus, according to the subscribed topics. Then,
it performs some computations with these data and publishes
other data for other modules. Every module is an infinite loop
composed of a sequence of actions and one of these actions
waits through a poll function, being blocked until new data,
produced by other modules, are available.

Every module waiting for the availability of data may have
a variable period, such that it is not possible to guarantee that
a module is sporadic or periodic. Moreover, unavailable data
may lead to variable execution times. Both important varia-
tions in terms of periods and execution times may increase
the difficulty of schedulability analyses.

In order to ensure that the schedulability analyses are
possible on systems integrating PX4 autopilot modules, we
transform the graph of modules corresponding to the PX4
program into a graph of real-time tasks.

III. REAL-TIME AUTOPILOT PX4-RT

We transform the PX4 program by modifying
every module. First of all, we guarantee that every
module is executed periodically at an accurate
period. This is achieved by using the C++ function
hrt_call_every(delay,interval,callout,arg)
provided by PX4 libraries. This function, called ”HRT”
afterwards, takes benefit of the high resolution timers of
the microcontroller. It calls, the first time, the function
callout(arg) after a certain delay delay and, then,
repetitively calls the function callout(arg) every interval
of time interval. More precisely, after the delay delay
it loads the value interval, corresponding to the desired
period, in a high resolution timer which is decremented
until it reaches zero. At this instant the timer is reloaded
with the value interval and, then, an interruption routine
corresponding to callout(arg) is triggered. In our case
callout(arg) only unblocks a semaphore. Thus, an HRT
and a semaphore are associated to every module, such that
HRT unblocks periodically the associated semaphore at the
specified period.

Identically to a module, as explained in Section II, every
real-time task is a NuttX task that is started at the beginning
of the PX4 program. But now, its first action consists in
executing HRT which unblocks periodically the associated
semaphore at the specified period, followed by an infinite loop
which performs the following sequence of actions: subscribe
to one or more topics via uORB, wait until the semaphore is
unblocked and, then, blocks the semaphore, read data from
corresponding topics via uORB, compute data of the task,
publish the resulting data to uORB. Consequently, since there
is no more poll functions that wait for available data, the latter
are read at the period of the task. This makes possible that
data have several times the same value, but data are never
lost. Even though this approach seems less smart than the
one consisting in waiting for available data, executing the
control tasks at an accurate period guarantees that data they
compute are transmitted with the minimum jitter from one
task to another task, and finally to the actuators, which is of
crucial importance for accurately controlling the motors of
the drone. If a task has a state, e.g., EKF2, it is not correct in
term of control to use twice the same data. Therefore, when
such a task reads a data which is not available, instead of
executing normal computations, we execute an empty loop
with the same duration as the normal computations. Therefore,
every real-time task is executed accurately at its period that
the user can change when testing. The task reads data from the
subscribed topic of the corresponding module, and publishes
data to other topics. Thus, we obtain a graph of dependent
real-time tasks and we illustrate a simplified version of this
graph in Figure 1, where the main real-time tasks are depicted

yves


yves


yves




in green. We qualify as ”real-time” this new version of PX4
and name it PX4-RT.

Fig. 1. Graph of dependent real-time tasks and HitL Simulation

In order to collect execution times of tasks, we execute
a large number of times a given autonomous flight mission,
i.e., with the same trajectory of GPS points, with PX4-RT
running on the single core ARM Cortex-M4 included on
the Pixhawk board, the most common board for autopilot
PX4-based drones. We measure the execution times inside a
HitL simulation based on the widely-used simulator Gazebo
[10] (see Figure 1) providing a large amount of execution
times that are extremely time consuming to obtain during
real flight missions. The modules of PX4 or the real-time
tasks of PX4-RT are scheduled by the scheduler of NuttX,
according to a fixed priority FIFO, i.e., when several modules
have the same priority they are scheduled FIFO. We use a Rate
Monotonic [11] priority assignment, where every task has a
period inherited by every module in PX4. We have 9 real-time
tasks in the graph of dependent tasks, their list is detailed in
Table I, as well as their periods of activation. They are ordered
according their priority from the highest priority (on the left
of the table) to the lowest priority (on the left of the table).

modules snsr rate ekf2 actl pctl fmgr hte navr cmdr
T (ms) 3 4 4 5 5 6 7 50 100

TABLE I
LIST OF THE REAL-TIME TASKS WITH THEIR ASSOCIATED PERIODS

IV. PROPOSED SINGLE CORE BENCHMARKS FOR
MEASUREMENT-BASED WCET ESTIMATORS

Our single core benchmark is composed of the real-time
tasks (programs) of the PX4-RT autopilot executed on an ARM
Cortex-M4. As this microcontroller has no cache memory,
nor any hardware acceleration feature, then the status of the
microcontroller features has no impact on the variation of the
execution times.

For each program of the PX4-RT autopilot, we provide the
following components as part of the benchmark KDBench:
the source code of all autopilot programs A, made publicly
available on a gitlab under an open source licence; the de-
scription of the microcontroller p which is, in our, case, the
ARM Cortex-M4; a measurement protocol M described by an
ordered sequence of values for input variables collected during
a recorded flight (see Figure 3); an ordered set c(A),∀A of
execution times as well (Figure 4).

Other possible utilization of the KDBench are probabilistic
scheduling analyses [12], [13]. Within our framework, we

provide an overview of response times, execution times and
release jitters distributions for each program in Figure 2. All
values are collected at the scheduler level.

In order to illustrate the other information provided by
the benchmark, we use the EKF2 program implementing a
Kalman filter. In Figure 3 we provide the ordered sequence
of two input variables (the z coordinate of the gyroscope
and the y coordinate of the accelerometer), showing different
functioning modes for these two input variables.

In order to allow users to analyze such modes, we also
provide the automatically detected transitions and subsequent
clustering of the execution times of this program in Fig-
ure 4, where we used the procedure described in [14]. Any
measurement-based WCET estimator may be used [6] and
we use the Extreme Value Theory estimator [15], analyzing
the statistical properties of these execution times. In Figure 5
we provide the estimation for all clusters according to two
possible methods, the GEV, respectively, and the GPD esti-
mators [15]. Two EVT estimators, GEV and GPD, first select
maxima from an ordered sequence of execution times, and
then they estimate the WCET distribution. The GEV estimator
uses the block maxima approach by dividing data into several
blocks with the same size and select the maximum of each
block, while the GPD estimator selects the largest values above
a given threshold.

V. FUTURE WORK: TOWARDS MULTICORE BENCHMARKS
FOR MEASUREMENT-BASED WCET ESTIMATORS

Given the simplicity of the considered single core microcon-
troller, we believe that a multicore version of our benchmarks
is important for our community. We migrate the autopilot
programs to a Navio2 board2 combined with a Raspberry
Pi 3 B+ board including an ARM Cortex-A53 multicore.
We prepare the same level of information as described in
Section IV. Moreover, interested users may migrate them
to any available Linux/POSIX-based board. We prepare the
same level of information as described in Section IV. In
order to finalize this new set of benchmarks we identify two
main difficulties: (i) the OS migration from the single core
ARM Cortex-M4 included in the Pixhawk board and (ii) the
evolution of the data protocol uORB for the new environment.

REFERENCES

[1] F. Nemer, H. Cassé, P. Sainrat, J. P. Bahsoun, and M. D. Michiel.
Papabench: a free real-time benchmark. In 6th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, volume 4 of OASICS, 2006.

[2] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The mälardalen
WCET benchmarks: Past, present and future. In 10th International
Workshop on Worst-Case Execution Time Analysis (WCET), volume 15
of OASICS, pages 136–146, 2010.

[3] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sorensen, P. Wägemann, and S. Wegener.
Taclebench: A benchmark collection to support worst-case execution
time research. In 16th International Workshop on Worst-Case Execution
Time Analysis (WCET), volume 55 of OASICS, pages 2:1–2:10, 2016.

[4] C. Maxim, A. Gogonel, I. Asavoae, M. Asavoae, and L. Cucu-
Grosjean. Reproducibility and representativity: mandatory properties
for the compositionality of measurement-based WCET estimation ap-
proaches. SIGBED Rev., 14(3):24–31, 2017.

2https://navio2.emlid.com



Fig. 2. Sequences of response times, execution times and release jitters

Fig. 3. Ordered sequence of EKF2 input variables: gyroscope (left) and
accelerometer (right), one axis each

Fig. 4. Ordered sequence of EKF2 execution times with different transitions
(left), three clusters color-identified (right)

[5] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron. The ROSACE
case study: From simulink specification to multi/many-core execution.
In 20th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS, pages 309–318. IEEE Computer Society, 2014.

[6] R. I. Davis and L. Cucu-Grosjean. A survey of probabilistic timing
analysis techniques for real-time systems. LITES, 6(1):03:1–03:60, 2019.

[7] L. Meier. PX4 Development Guide. https://dev.px4.io/en/.
[8] G. Nuttx. NuttX Operating System, User’s Manual. http://www.nuttx.

org/doku.php?id=documentation:userguide.
[9] MAVLink Developer Guide. https://mavlink.io/en.

[10] Gazebo Simulator. http://gazebosim.org.

Fig. 5. WCET estimation for all clusters of EKF2 execution times, with GEV
and GPD estimators, respectively. Colors correspond to those in Figure 4

[11] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 20(1):46–61,
January 1973.

[12] K. Zagalo, L. Cucu-Grosjean, and A. Bar-Hen. Identification of
execution modes for real-time systems using cluster analysis. In 25th
IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA 2020, pages 1173–1176. IEEE, 2020.

[13] S. Ben-Amor, D. Maxim, and L. Cucu-Grosjean. Schedulability analysis
of dependent probabilistic real-time tasks. In the 24th International
Conference on Real-Time Networks and Systems (RTNS), 2016.

[14] M. Wehaiba el Khazen, L. Cucu-Grosjean, A. Gogonel, H. Clarke, and
Y. Sorel. Work-in-progress abstract: Wks, a local unsupervised statistical
algorithm for the detection of transitions in timing analysis. In 27th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA, pages 201–203. IEEE, 2021.

[15] M. Wehaiba El Khazen, A. Gogonel, and L. Cucu-Grosjean. Work
in Progress: Lessons learnt from creating Extreme Value Libraries in
Python. In the 41st IEEE Real Time Systems Symposium (RTSS),
December 2020.


