Improving the Sensitivity of Deadlines with a Specific Asynbronous Scenario for
Harmonic Periodic Tasks scheduled by FP

P. Meumeu Yomsi, Y. Sorel, D. de Rauglaudre L. George
AOSTE Project-team LACSC
INRIA Paris-Rocquencourt ECE
Le Chesnay, France Paris, France
{patrick.meumeu, yves.sorel, daniel.driglaudre @inria.fr lgeorge@ece.fr
Abstract ([4]), task periods ([4]), or task deadlines ([5]). This neak

it possible, for example, to find a feasible task set, if the

The aim of this paper is to address the problem ofcurrent one is not feasible, by modifying the task paranseter
correctly dimensioning real-time embedded systems. It ior determining the impact of an architecture change on the
well known that computers which control systems are greatlyeasibility of a task set. We are interested in the sengjtivi
affected by delays and jitter occurring in the control loop. of deadlines when tasks are scheduled with fixed priority
In the literature, a deadline reduction approach has beenDeadline Monotonic scheduling. Sensitivity analysis for
considered as one solution to reducing the jitter experehc deadlines has been considered for Earliest Deadline First
by a task and therefore obtaining better loop stability in (EDF) scheduling by ([5]) showing how to compute the
the control loop. Here, in order to improve the sensitivity minimum feasible deadlines such that deadline of any task
of the deadlines, we propose another solution for reducing is equalaD;, wherec is reduction factol0 < o < 1.
the deadline of a task when all tasks are scheduled withn ([6]), the space of feasible deadlines (D-space), a space
the Deadline Monotonic Algorithm. This is performed for of » dimensions has been considered. Any task set having
a specific asynchronous scenario for harmonic periodicdeadlines in the D-space is considered to be schedulable. To
tasks. We compare the results to those for the synchronouibe knowledge of the authors, no work has been done on the
scenario. sensitivity of deadlines for fixed priority scheduling.

) Computer controlling systems are very much affected by
1. Introduction delays and jitter occurring in the control loop. A deadline
reduction has been considered by ([6]) as one solution
In this paper, we consider the problem of correctly di-to reducing the jitter experienced by a task and therefore
mensioning real-time embedded systems. The correct diebtaining better loop stability in the control loop. This
mensioning of a real-time system strongly depends on th@aper proposes a solution reducing as much as possible the
determination of the tasks’ Worst-Case Execution Timegdeadline of a task when tasks are scheduled with Deadline
(WCETSs). Based on the WCETSs, Feasibility ConditionsMonotonic.

SWith Deadline Monotonic, tasks are scheduled according to

en. ;
tasks are scheduled by a fixed or a dynamic priority driver?qe'r relative deadlines. The smaller the relative dea&dlin

. . . L e higher the priority. Starting from a schedulable task se
scheduling algorithm. We consider an application composecj1 9 P Y g fror . sk .

Lo L we want to characterize the minimum deadline reduction
of a periodic task sef,, = {ry, ..., 7, } of n periodic tasks,

scheduled with Fixed Priority (FP) preemptive scheduling.fac'[orO.< a < 1 such t.hat any task;, i - 1...n having
The classical definition of a periodic task is: a deadlineD; = ax T; is schedulablea is such that any
smaller reduction factor would lead to a non schedulable tas
« Cj: the Worst Case Execution Time (WCET) of set. We compare the value of obtained in the worst case
« T;: the period ofr;. synchronous scenario (all the tasks are first released at the
o D;: the relative deadline of; (a task requested at time game time) to that obtained with a particular asynchronous
¢t must be terminated by its absolute deadline D;), scenario that we propose, and which has some interesting
whereD; < T;. properties. We show that the minimum reduction factor
A recent research area called sensitivity analysis aimsoat p obtained in our asynchronous scenario is always less than
viding interesting information on the validity of feasiby ~ or equal to the minimum reduction factor obtained in the
conditions considering possible deviations of task WCETssynchronous scenario.

For Fixed Priority (FP) scheduling, necessary and sufficienwhere P = LCM(Th,...,T,) and it leads to a pseudo-
FCs have been proposed in the case of non-concrete tasgslynomial time complexity for the feasibility conditions
where the first release times of the tasks can be arbitrary. A

classical approach is based on the computation of the task¥his is an interesting approach as it provides a pseudo-
worst-case response times ([7], [2]). The worst-case mrspo polynomial time complexity but it may lead to a pessimistic
time, defined as the worst case time between the request tintBmensioning as the synchronous scenario might not be
of a task and its latest completion time, is obtained in thdikely to occur.

worst case synchronous scenario corresponding to the case order to improve the schedulability of the systems, dffse
where all the tasks are released at the same time, and &rategies on the first release times of the tasks have been
computed by successive iterations. This worst case responsonsidered. A system where offsets are imposed is called
time provides a bound on the response time valid for anyan asynchronous systems. ([8]) shows significant featyibili
other task first release times. A task set is declared feasiblimprovements considering offsets. Simulations show that
if for any task in the synchronous scenario, its worst caséhe number of feasible schedulable systems with offsets
response time is less than or equal to its deadline. It can b@vhile unfeasible in the synchronous case) increases hith t
shown that considering only non-concrete tasks can lead toumber of tasks for a processor load(o® and ranges from

a pessimistic dimensioning [8]. 40.5% to 97% for different offset assignment strategies. This
ercentage strongly decreases when the load is high (tends
1).

ith asynchronous tasks, ([11]) shows that for a given ¢ffse
aSS|gnment the schedulability of the tasks must be checked
in the interval[0, max;—1.. »(O;)+2P) whereP is the least

The complexity of this approach depends on the wors
case response time computation complexity. In the case q}(\)/
deadlines less than or equal and to periods for all tasks
the worst-case response tinig of a taskr; is obtained in

the syn_chronous s_cenario for the f_irst releaser;0t time common multiple of the tasks ar@, is the offset of task;,

0 and is the solution of the equation ([7B; = Wi(1), leading to an exponential time complexity. To provide less
whereWi(t) = Ci + 3. chp(i) [W Ci andhp(i) denotes pessimistic FCs, it is furthermore mandatory to prove that
the set of tasks with a priority higher than or equal to thatthe offsets will not result later in a synchronous scenario.
of 7; exceptr; itself. The value ofR; is computed by This problem is referred to as the K-simultaneous congru-
successive iterations and the number of iterations is bedind ence problem in the state of the art ([11]). This feasibility
by 143, chpii) { T L The FC has been revisited by ([9]), result has been significantly improved by ([12]) showing tha
which the authors showed that a necessary and sufficienthe interval to check the feasibility of a periodic task séthw
feasibility condition for a task set isit € S, such that offsets can be reduced {6, maz;—1. ,(O;) + P).

Wi(t)/t <1, whereS = U. cppiy1kT), k € N} N[0, Di]. Furthermore, ([11]) proves the non optimality of Deadline
For any taskr;, the checking instants correspond to the Monotonic scheduling for asynchronous systems when tasks
arrival times of the tasks with a higher priority within the deadlines are less than or equal to periods. An optimal
interval [0, D;]. This feasibility has been improved by ([9]), priority assignment can be obtained @(n?) using the
where the authors showed how to reduce the time instants &udsley procedure ([13]).

S. For any taskr;, they show how to significantly reduce the A particular case denotedffset free systemsorresponds
number of checking instants duringinter\{&lD]to atmost to the case where offsets can be chosen arbitrarily. An
2i—1 times rather thaﬂ‘FZT chp(i) LWhen deadlines optimal offset assignment is given in ([14]). An offset
and periods are mdependent ([2]) shows that the worstdssignment is optimal if it can find a schedulable offset
case response times of a sporadic tasks not necessarily Whenever a feasible assignment exists. The complexity of
obtained for the first activation requestqfat time0. The the offset assignment algorithm is exponential and is in
number of activations to consider is+ ,wherer;, O((mazag;<,T;)"™"). The offset of taskr is set to 0.

is the length of the worst-case Ievel-busy perlod defined Different offset strategies heuristics have been consitler

in ([10]) as the longest period of processor activity rurmnin ?ﬁg:;g;rar:ﬁ:;? Tfnfsézeén ' (Hi])canatcégen;?setsdi:zg;tlar
tasks of priority higher than or equal 1@ in the synchronous 9 prop y

. I (computing a distance between the offsets) the offset of
scena.no. It can be shown tha = ijehp(i)un {T_]W Cj- the tasks to be as far as possible from the synchronous
From its definition,L; is bounded by: scenario. The algorithm sorts the couple of tagks 7;)

C; by decreasing values a@fcd{T;,T;} such that the distance
Z C belongs td0, ged{T;, T;}). The dissimilar offset assignment
. mj€hp(iurs 1 — Z ?J significantly reduces the number of offsets to consided-ea
Min ek (3)- ing to a complexity irO(n?.(log (mazc 1. T) +1og(n?))).
—2.p Other offset assignment strategies have been considered by

ri€hp(i)UT; T; ([8]) using the Audsley procedure to determine the subset of

tasks ofr that can be feasibly scheduled in the synchronousleadline reduction factor for several load configuratiams i
scenario (setting their offset to 0). The offsets are onlyboth the synchronous and in our asynchronous scenario.
computed for the subset of tasks that are unfeasible witlrinally we conclude the paper in section 6.

the Audsley procedure in the synchronous case. The authors

consider different criteria to assign the offsets, based o2. Properties of the asynchronous harmonic

the criteria used to sort the couple of tasks, ;). The
complexity is the same as that of the dissimilar offset
assignment.

In this paper we consider a particular asynchronous
harmonic concrete task set wheve < i < n,T;,_; | T;
(i.e. there existsk € Z such thatT; = kT;_;) with
particular offsets. In the case of non-concrete harmonic
tasks, when tasks are scheduled with Rate Monotonic (the
shorter the period, the higher the priority) and in the case
deadlines are equal to periods, a necessary and sufficient
condition for the feasibility of such a system is given by
U=>.1. % < 1 (see [15]). This potentially proves
the benefits of considering harmonic tasks getting better
feasibility conditions. This property does not hold when
deadlines can be shorter than periods. In this case we
show how to determine irO(n) the offset of the tasks

to obtain a pseudo-polynomial time feasibility condition
instead of an exponential one. In the case of asynchronous
tasks, the worst case response time cannot be computed,
with a recursive equation as for the synchronous tasks.
This is due to the fact that with offsets, there is not
necessarily a continuous busy period from time 0 to the
release time of a task. In this paper we investigate a
new approach to compute the worst case response time ,
of a task based on the Mesoid approach. This approach
was first introduced by ([16]) in the context of real-time

task set

2.1. Concepts and notations

We recall classical results in the uniprocessor context for
real-time scheduling.

Time is assumed to be discrete (task arrivals occur
and task executions begin and terminate at clock ticks;
the parameters used are expressed as multiples of
the clock tick); in [17], it is shown that there is no
loss of generality with respect to feasibility results by
restricting the schedules to be discrete, once the task
parameters are assumed to be integers (multiples of the
clock tick) i.e. a discrete schedule exists, if and only if
a continuous schedule exists.

o A task set is said to be valid with a given scheduling

policy if and only if no task occurrence ever misses its
absolute deadline with this scheduling policy.
U=>", Q is the processor utilization factor asso-
ciated to the task sdt,,, i.e., the fraction of processor
time spent in the execution of the task set ([18]). If
U > 1, then no scheduling algorithm can meet the
tasks’ deadlines.

The synchronous scenario corresponds to the scenario
where all the tasks are released at the same time (at
time 0).

scheduling with preemption cost. This approach does not The model depicted in figure 1 is Liu & Layland's

response times of the tasks. We propose a particular offs
assignment, such that the worst case response time of any
task is obtained for its second request time, providing an
exponential time improvement in the complexity of the FCs.

require a continuous busy period to compute the worst casglr

The rest of the paper is organized as follows. In section rask r,

2, we introduce the concepts and notations and establist
important properties for the particular asynchronous agen
that we consider. We consider harmonic periods. We show
that, using this particular scenario, the worst case respon
time of every task is obtained for its second instance.
In section 3, we introduce the concept of Mesoid which
is used to compute the worst case response time of an

ioneering model [18] for systems executed on a single
0Ccessor.

[E—
‘k

Instance k+1

Instance k

Figure 1. Model

asynchronous task set. In section 4, we give an algorithnT hroughout the paper, we assume that all timing charaeteris
for the computation of the worst case response time ofiCs are non-negative integers, i.e. they are multiplesoafes
any task in our asynchronous scenario, then we show ho®lementary time interval (for example the “CPU tick”, the
to compute the minimum deadline reduction factor. Ansmallest indivisible CPU time unit):

example is given in order to compare the deadline reductionVe

introduce several notations for a periodic tagsk =

factor obtained with our asynchronous scenario to that in(Ci, D;, T;) used to compute the worst case response time
the synchronous scenario. We provide experimental resultef a task:

in section 5 based on extensive simulations comparing the «

7k The k'" instance ofr;

. r1: Release time of the first instance nf Proof: (By induction on the number of tasks) The

e 78 =7} + (k- 1)T;: Release time of} property is straightforward for the simple case where: 1:

« RF: Response time of’ released at time” indeed, the schedule for task is periodic of periodT}

o R;: Worst-case response time gf from its first release 4 = i) since C; < T, other-
wise the deadline of the first instance is missed. Let us

2.2. The specific asynchronous scenario now assume that the property is true upso= ¢ — 1

andT'; = {m,m, -+, 7} is schedulable up te; + H;,

with H; = LCM(Ty,T»,---,T;). Notice thats; is the

Now, we give some interestin roperties which are .
9 g prop st release time of task; after (or at)s;_;. We have

satisfied by the specific asynchronous scenario we propogg) ; ;
which lead to the conclusion that the worst case responsg T H; > si-y + Hi-y and by induction hypothesis,

time of a task in our asynchronous scenario is obtained fop® Séj_bsfetrifl_ - “Efl’ 72, a-ﬁ_ri,l}:a\lstsc?edulabled an(;
any task for its second release. periodic froms;_; of period H; ;. As tasks are ordere

In this section we assume that the relative deadline foﬁy priority, the instances of the first ones are not changed
each task equals its period, i.8; = T;. This assumption Y the requests of task; and the schedule repeats at
. . . time s; + lem(H;-1,T;) = s; + H;. Consequently[’; =
will be weakened in section 4. .) '
We first show in lemma 1 that with harmonic asvn- {m, 7, -, 7} is schedulable and its schedule repeats from
. . y s; with period H;. O
chronous tasks, two instances belonging to any two tasks . .
We now characterize the asynchronous scenario we con-

can never be released at the same time if their release times, L
. . Sider in this paper in corollary 1. This leads to providing
are not equal modulo their periods.

) a simple method for computing the worst response time of
Lemma L:Let T, = {1, 7, -+, 7} be & system of o) py tackin section 3 by using coroll@yand then a pseudo
independent harmonic (i.€.; | T;11,Vi € {1,---,n —1}) y 9 ¥ P

preemptive tasks ordered by decreasing prioritigs € polynomial FF detailed in sgctmn 41
T, Vie{l, - n—1}). Corollary 1: From the point of view of any task; of

. hedulabl ted,, = T dered b
If there exist two tasksy;,7; € I'y, (i < j) such that 3ei<r:eaesiza reilorsii@se](i - {T%Z’{l ’T }n(irle};esucﬁ/
ri # vt modT;] %, then Ak,1 > 0 such that¥ = rl. gp = PN

S __thatT; | T;,, andr!, , = r! —C; 1, the schedule is periodic
Proof: (by contradiction) Let us assume that there exis i| T ol i P

rom the second instance with peridd, = T;.
. ; ; 1 1 : i
two tasksri, 7j € I'n, (Zk<])l such thatr; # r; modTi, Proof: (By induction on the index of the task) Let
and3k,l > 0 such thatrj =r;.

us consider a task; of a schedulable systeni,, =

k. 1 1 Y

ri=T = Tgl* + (1‘13— DT =ry + (1 =1T; {m,72, -, 7}, we assume thaf; | T;;; and Ti1+1 =
= Tal' = Til + (=T = (k= 1T} r! — Ciy1, Vi > 1. Thanks to the previous theorem, it
< r;=r;modTi] asT; | T;. is sufficient to prove thas; — v} = T;, Vi > 2. This is

Contradicts the hypothesis and thus, ends the proof.C] done by induction ori

We now S_hOW in theorent that from the point O,f viev_v The property is straightforward for the simple case where
of any task in the system, the schedule repeats identically __ 5. ;qeed asl, < Tb and H, = LCM(T1, Tz) = T

from the second instance. the schedule for task is periodic of periodT: from its

(inspired by theorem 2.48 in [19])]) (s —rd)T .
Let ', = {7r,7, ---,7,} be a system ofn asyn- second release sineg = r; + [T] Ty =r; +
chronous independent periodic preemptive tasks ordered by, L _))
decreasing prioritiesT{ < T;+1,Vi € {1,---,n — 1}). Let T, Ty = r} + Ty is the first release time of task after
ri,73, -, 1y, be respectively the release time of their first (or at) s, = r1. Let us now assume that the property is true
instances. Lets;)1<i<, be the sequence inductively defined up to indexi — 1 andT'; = {1, 7, --,7;} is schedulable.
by Thanks to the previous theorem, we have
=l N R) 1 Iy+
s1 7’11 T | . — Tzl"'[w-‘ T - T%_’_’V(Tzl +T;1 ;) -"Ti
si—rz—i—[#—‘-ﬂ- Vie{2,---,n} i i

(1) by induction hypothesis.
Ti_ Ci +
_Then’)) Thus,s; = 7«1.1 + 7(1+ G
if T',, is schedulable up tos, + H,, with H, = i o
LCM(T1,Ts,---,T,) and &t = maz{z,0}, thenT,, is Now, as0 < T;_; + C; < T; due to the scenario imposed
o Il " to the first instance of each task and the fact tHat, | 7,
then we obtairs; = r} + T;. 0
1. Givena,b,c € Z : a = bmod(c] means that there exists€ Z such Coro_”ary _2: The worst response timB_i of each taskr; _
thata = b + cd. is obtained in the second instance and is equal to that in all

-T;; sincer}_; =r! +C;.

schedulable and periodic from), with period H,.

instances greater than 2. different periods. Since at each level the schedule repeats
Proof: Immediately follows from corollary 1 and the indefinitely from the second instance thanks to coroligri

fact that R} = C; by constructionRF > C; Vk > 1, and is sufficient to perform the scheduling analysis in the iwdér

we consider harmonic tasks. O [r}+Ti,r}+2T;) for task; as its response time in its first

We now suppose in the following the asynchronous tasknstance equals its WCET.
set defined in corollaryl. We now present the Mesoid We proceed the schedule from the task with the shortest
approach used to compute the worst case response time périod towards the task with the longest period. Thus, at eac
periodic tasks in an asynchronous task set. level in the scheduling process the goal is to fill available

time units in the previous schedule, obtained up to now, with
3. Worst case response time: the Mesoid ap- slices of the WCET of the current task, hence we obtain
proach the next current schedule. Consequently, we represent the

previous schedule of every instaneg of the current task

In this section, we provide the method for computing7: = (C;, T;) by an ordered set df; time units where some
the worst response time of each task in order to checlkave already been executed because of the execution of tasks
its schedulability. Actually, three classical methods nbey ~ With shorter periods, and the others are still availablettier
used to do so: the utilisation factor of the processor ([20]) execution of taskr; in that instance. We call this ordered
the worst response time of each task, or the processdiet which describes the state of each instarfcehe M
demand ([21]). In this paper, we have chosen to use th&i-mesoid More details on the definition of &-mesoidare
second approach as it provides a schedulability conditiofiven in [16]. For the current task = (C;, T;), there are as
for each task individually. The main idea behind the Mesoidmany 7;-mesoids as instances. We cal?* the 7;-mesoid
approach is filling some available time units left by the corresponding to the second instance of taskefore being
schedule of higher priority tasks with executed time unitsscheduled in the current schedule. The process used to build
corresponding to the execution time of the current '[r;lsk,/\/l?’2 for taskr; will be detailed later in this subsection. Still,
Since the worst response time is obtained in the secontfom the point of view of task;, we define for the mesoid
instance w.rt. corollary2, we will achieve this goal by M. the correspondingniverseX? to be the ordered set,
applying the method described in [16] to a system wherecompatible with that of the mesoid, which consists of all
all tasks are not released simultaneously and where the coite availabilities ofM??. That is to say, all the possible
of a preemption is assumed to be zero. This method, contrayalues thaiC; can take inM%. Taskr; will be said to be
to those proposed in ([22], [3], [23]), is of lesser comptgxi potentially schedulabld and only if
since it is not necessary to _de_termine the releases of every CieX? Vie{l,--,n} @)
task w.r.t. those of higher priority tasks.

As we are in a fixed priority context the proposed method This equation verifies tha€; belongs to the universe
checks for the schedulability of each task by computing itsat leveli. If it does not, then the system is clearly not
worst response time, from the task with the highest prioritysSchedulable. When equation (2) holds for a given task
to that with the lowest priority. Hence, from the point ofwie We call M{** the T;-mesoidscorresponding to the second
of any taskr; of a systenl’,, = {71, 72, - - -, 7, } ordered by instance of taskr; after r; has been schedule(zi./lf’2 is a
decreasing prioritiesI{_, < T;,Vi € {2,---,n}) such that function of/\/lf’2 which itself is a function ot/\/l‘;’_zl, both
T;1|T; andr! = r}_, — C;, the elapsed duration between detailed as follows.
the release of the second instance and the first rel€ase Let f be the function such that(;? = f(M?)
of task 7,_; is given by T; — C;. Before pro\/iding the which transforms thd“i_l—mesoid after tast_l has been

computation method of the worst case response time, wecheduled at level—1 into the7;-mesoid before task; is

provide some necessary definitions below. scheduled at level . _ . _
As mentioned in [16], a mesoid consists only of time units
3.1. Definitions already executed denoted by and time units still available

denoted by &”. Moreover, the cardinal of a mesoid is equal

All the definitions and terminologies used in this sectionto the period of the task under consideration whatever the
are directly inspired by ([16]) and are applied here to thelevel is. As such, the functiorf transforms a time unit al-
case of a model where the cost of preemption is assumed teady executed (resp. still available)ir;* into a time unit
be zero. From the point of view of any task thehyperpe- already executed (resp. still available)M?’2 by following
riod at level i H;, is given byH; = LCM{T}}; cop(r) = an indexy which enumerates, according to naturals, the time
T, as T;_1|T; for everyi € {2,---,n} , and sp(r;) is units (already executed or still available) M;’fl of task
the set of tasks with a period shorter than that of task 7;_; afterr;_; has been scheduled. As the elapsed duration
Without any loss of generality we assume that the first taslbetween the release of the second instance of tasnd

T, Starts its execution at timé = 0 and all tasks have the release of the first instance af | is T; — C;, theny

starts from the time unit right aftey, = T; — C; mod[T;_,] 4. Deadline reduction factor
time units in the mesoid\®? towards the last time unit,
and then circles around to the beginning of the mesoid4. 1. Worst case response time computation
M®2 again, until we get thel;-mesoid M?2. This T;-
mesoid is obtained wher = T;. Indeed, the previous The approach proposed here leads to a new schedulability
schedule at levet (the schedule obtained at level- 1) condition for harmonic hard real-time systems. This condi-
consists ofH,_; = T;_, time units whereas the schedule tion is new in the sense that besides providing a necessary
of the current taskr; is computed upon/; = T; time and sufficient schedulability condition, it also reduces th
units. Thus, that amounts to extending the previous sceedukeasibility interval for a given harmonic asynchronous-sys
from T;_; to T; time units by identically repeating the tem.
previous schedule as often as necessary to olftqitime In the scheduling process, at each leuethe basic idea
units. Due to the particular releases of the first instance ogonsists in filling availabilities in the mesoidxtf’z before
each task, i.erj,, = r} —Ciy1 Vi € {1,---,n — 1}, taskr; is scheduled, with slices of its WCET. This is why it
notice that index:) in contrast to index(used in [16] is fundamental to calculate the corresponding responge tim
which started from the first time unit, starts from the time This yields the worst case response time and allows us to
unit right afterv; = 7; — C; mod [T;_1] time units in conclude on the schedulability of task w.r.t. priorities. In
the mesoid M. Sincer; is the task with the shortest the case where, is schedulable, we build1%-?, afterr; has
period, thensp(r1) = {71}. Becauser is never preempted, been scheduled, in order to check the schedulability of the
we haveM}? = {1,2,---,T1} and therefore we obtain next task, and so on, otherwise the system is not schedulable
MP? ={(C1),1,2,---, Ty — C1}. Thanks to everything we have presented up to nowis

Let g be the function such that1®> = g(M??) which scheduled first and! = 0. The latter statement implies
transforms theT;-mesoid M before taskr; has been thatbefore ; is scheduled, its WCET can potentially take
scheduled at level into the T;-mesoid M % after taskr; any value froml up to the value of its period?. Since

has been scheduled at level taskr, is never preempted, them®? = {1,2,..., 71} and
X% ={1,2,---,T1}. In addition, its response time is also
3.2. Worst case response time with a Mesoid equal toC;. Consequently, the correspondifig-mesoids

associated to task; are given by
For the Ti—mesoid/\/lf’z, we will compute the response

. 5) .) MPE={1,2,---. Ty}

time R of taskr; in the second instance by adding to the 1 14741

WCET C; all the consumptions appearing in thatmesoid 71 s

before the availability corresponding @, [16]. This yields My ={(C1),1,2,---, T — C1}

the worst-case response timke of taskr; since at each level We assume that the first— 1 tasks with2 < i < n have
the schedule becomes periodic from the second instande, thaiready been scheduled, i.e. tﬁgl-mesoid/\/l?fl of task
is to sayR} = R} Vk > 2 and R} =Ci Vi1 7:—1 is known, and that we are about to schedule tgsk
Now we can buildM;"" = g(M;’)szﬂCUO“g trans- As explained in the previous section, tHE-mesoid
forms a time unit already executed.ivfli’2 into a time unit /\/lf’Q = f(/\/l?fl) of task ; is built thanks to indexy
already executed ia\/l;.”Q, and transforms a time unit still gn Mziz,_zl of task ;_; without forgetting to start from the
available into either a time unit still available or a timeitun time unit right aftery; = 7, — C; mod [T}_,] time units
already executed w.r.t. the following condition. We use anrather than the first time unit as in [16]. Again this is

index which enumerates according to numerals the time unitgue to the particular release of the first instances of tasks:
in M;’ from the f|rst_ to the last one, at each_step in the,1 — 1 (. We can therefore determine the univesg
incremental pl’OCGSQS, if the_ current value of the mdex is lleswhen the]}_l—mesoid/\/l?’_gl is known. Unless the system
than or equal toR;, function g transforms the time unit s not schedulable e, ¢ X2, we assume that task
still available into a time unit already executed due to thejg potentially schedulable, i eﬁf € X2. The response time

, z.

execution of instance;’, otherwiseg transforms it into & 2 of task 7, in its k' instance (withk > 2), i.e. in the

t?me un_it s_tiII available. Indeed, fun_ctiog_ fills available ptn T:-mesoidwill be obtained by summing’; with all
time units in the current schedule with slices of the WCETconsumptions prior ta; in the corresponding mesoid. The

in eachT;-mesoid, leading to the previous schedule for theygrst-case response tim®; of task 7; will then be given
next task at level + 1 w.r.t. priorities. To summarize, for

every taskr;, we have R; = R?
b2 . ; i | . . X
Mt Ti-mesoid beforer; is scheduled at level This equation leads us to say that taskis schedulable

a2 . . . _ if and only if
M7 Ty-mesoid afterr; is scheduled at level R, <T 3)

T; -

If for task 7; expression (3) holds, thet?? = g(M>?) 7. If R; < D;, then build M®*? = g(M>?), increment

will be deduced as explained in the previous section. For 7, and go back to step 2 as long as there remain
the sake of clarity, whenever there are two consecutive con- potentially schedulable tasks in the system.
sumptions in anesoid this amounts to considering onlyone g. | R, > D, then the systendr; = (Ci, T))}1<i<n iS
consumption which is the sum of the previous consumptions. not schedulable. o

That is to say that after determining the response time &ftas o. end for

in th i i ak _ e :
7 in its £ mesoid, if M = {(c1), (c2),1,2,--}, then Thanks to the above algorithm, a system woftasks

.. . ak
this is equivalent toM(;™" = {(c1 +¢2), 1,2, ---}. _ {ri = (Cy,T))}1<i<n, With harmonic periods and first
Below, we present our scheduling algorithm which, for .ojaased such th&t}_ = rl, — C;, is schedulable if and

a given task, on the one hand first determines the valugmy if
of v; = T; — C; mod|[T;_4] relative to priorities, then, on
the other hand the schedulability condition. Recall that th Ri=R3<D; Vie{l1,2,---,n} (4)
elapsed duration between the release of the second instance)
and the first release i, — C;. The scheduling algorithm 4.2. Computation of «
has the following nine steps. Since the task with the shbrtes
period, namely task, is never preempted, the loop starts The value ofa is given by:a = maxi<i<, T
from the index of the task with the second shortest penque recall that for the synchronous scenario, thé worst case
namely taskr as the schedule proceeds towards tasks W|tr}esp0nse time of task, is given by:
longer periods.
1: for i =2ton do
2: Determine the release time of the first instance of task jehp(i)
Ti-

R;

R, =C; + Z % Cj

J

Example
r=rl, —C; P
and computey; = T; — C; mod|[T;_,] of the second Let us consided T, 72, 73, 74} t0o be a system of four
instance ofr; W.rt. 7;_, tasks with harmonic periods and first released suchrthat

5 WLt 71,

I — ;. The characteristics are defined in table 1.
3 Build the Ti-mesoid M®2 = f(M®?) of taskr; ! S0 ned!

before it is scheduled. This construction is based on a Table 1. Characteristics of the tasks
moduloT; arithmetic using index) on M %% without

forgetting to start from the time unit right aftes = G | T
T; — C;mod[T;_4] time units rather than the first time g i 155
unit as in [16]. This is due to the particular release 7 | 5 | 30
of tasks. 4 | 7 | 60

4. For theTi—mesoid/\/li-”2 resulting from the previous
step, build the corresponding universé? which
consists of the ordered set of all availabilities of
M. Notice that this set corresponds to the set of
all possible values that the WCHT; of taskr; can

The shorter the period of a task is, the higher its level is.
Thus, as depicted in table 4, has the highest level and task
74 the lowest level. Thanks to our scheduling algorithm,
for task 7; whose first release time is = 0, we have

take in M"2. M2 ={1,2,3,4,5}
5. Since 7; is potentially schedulable, i.e. its WCET n:y 222
C; € X2, we must verify that it is actually schedula- MP”={(2),1,2,3}

ble. Clearly, ifC; ¢ X7, then taskr; is not schedu- .. — 75, _ 2, mod [T1] = 15 — 4mod[5] = 1, thus for task
lable because the deadline of the task is exceede% whose first release time is, = r! — C, = —4, we have

6: Determine the response tinfé of taskr; in its k'" M3? ={(1),1,2,3,(2),4,5,6,(2),7,8,9, (1)}
instance, i.e. in thé" T,-mesoid This is obtained 72:\ Re=4+2+1=7
by summingC; with all the consumptions prior t&; M5? ={(7),1,2,(2),3,4,5, (1)}
in the corresponding mesoid. Deduce the worst-case, — 75 — Cymod[T] = 30 — 5mod[15] = 10, thus for task
response timek; of task ;. 3 Whose first release time i§ = r} —C3 = —4—5 = -9,
R, = R? we have

M3 ={(1),1,2,3,(8),4,5,(2),6,7,8,(8),9,10, (1)}
T3 Rz =5+8+1=14
M5® = {(16),1,2,3,(8), 4,5, (1)}

It is worth noticing that task; is schedulable if and
only if R; <D;.

v4 = Ty — Cymod[T3] = 60 — 7mod[30] = 23, thus for task ~ aq@synchrnous — maq(2/5,7/15,14/30,36/60) = 0.60,
71 whose first release time ig = ri —Cy = —9-7 = —16, which means the improvement performed in this case is of

we have 34.54%
MY ={(4),1,2,(17),3,4,5,(8),6,7,(17),8,9, 10 425} _
m:d Ry=T+8417+4=36 . Experimental results

M§? ={(53),1,2,3,(4)}
In this section we present some experimental results com-
Consequently, the set of tasKs:, 72, 73,74} With har- paring the minimum deadline reduction facteobtained in
monic periods and first released such that=r}_; — C; the synchronous scenario and in our particular asynchmnou
is schedulable. The schedule with the above characteristiGeenario. We consider harmonic tasks scheduled with the
is depicted in figure 2, Deadline Monotonic algorithm.

We perform 10000 experiments for each graph, and every

t |\H‘H\|\H|HH|HH‘HH|\H|HH‘HH|H|\H|HH‘H\|H|\H‘HH‘H \| 1 |\ H|HH‘\H|H|H\|HH‘ taSk set COﬂSlStS Oﬁ =10 harmonlC taSkS The tOtaI Utl-
R EEE R lization factor of the processor is randomly chosen between
t ‘HUH\H\‘HHHHHHH|HH\HHHH|HHHHH\|\HU\HH\‘HH\HH H‘H 1 HHHH|HHHHH|\H} 0.7 andl f(_)r eaCh task set. Hence, we can eva|uate the ga_|n
[‘HH\AH i\ 111 HHH\HHH|\H\Z\6HH \HHHH‘\lHH 1l \‘ H\B\ﬁH\iH I 1l \7\1\\ H\H'\ HMH 1l HHHHlTl\ 111 \| \Hu\ﬁmi Of our SpeCiﬁC asynChronous Scenario deﬁned in COI‘O||aI‘y
3 1 i i T 1 in section 2, compared to the synchronous one. We set

t | DR L i\ LU LT HHHHHH|\ |1 \HHHiH IS TN i |\ |1 HHHH o = Dl s
K 1 ! 1 " ' of the relative deadline®; by the same factor for all tasks

in each set. In both the synchronous and the asynchronous
Figure 2. Execution of a set of harmonic tasks with r} = scenario, we plot the curves corresponding to the smallest
L, —Ci, YVie{2,--,4} value of, as a function of the total utilization factor of the
processor, for the task set to remain schedulable. If theeval
whereas the schedule of the same set of tasks releas@fi « is denoteda Ve romeus in the synchronous scenario
simultaneously is depicted in figure 4. and q@synehronous in our asynchronous scenario, the gain
can be computed as follows:

o (DD) qsynchronous _ qasynchronous
0 § T 5 ® 5 2 ¥ 4 & 8 & 8 gain = cpsynchronous x 100
e LU0 Mool om om0 e

0 B El & L1}

t3|\HH AR PR Hm| L BB |
] il 1.0

t4|H\HHHHHH\HHHHHH\HH\HH\HHH\H| 0.9 - Fs

0] r
o.s - R

0.7 |- _}

dpha
\

Figure 3. Execution of a set of harmonic tasks with r} = oel T]
0vie{l, -, 4} I T)

0.5 |- T —

O. a4 T —

It is worth noticing here the large variation between i
the two scenarios in terms of the tasks’ response times. °S7o oZ7s oso oss oso oes 100
As a matter of fact, the worst case response time of task o7
74 in figure 2 is 36 whereas it is55 in figure 4. This Figure 4. Value of a with our asynchronous scenario
phenomenon is even more apparent in the next section witand with the synchronous scenario
the experimental results where we gradually and uniformly
decrease the value of the relative deadlines for all tasks by |n figure 4, the curve in plain style represents the result

the same factor to highlight the advantage of our approachyptained for in our asynchronous case whereas the curve in

Tasks| REvnchronous | pasynchronous dot style represents the result obtained in the synchronous
- s 2 s 2 case. In both cases, we start with a schedulable task set
P 3 7 V1, D; = T;. From [15],U < 1 is a necessary and sufficient
P 15 14 feasibility condition for the schedullability of an harmoni
- 55 36 task set as tasks are scheduled with DM equivalent to RM

Whenvn, D, =1T;.
This leads us to obtain qsynchrnous = We can see that for a small load, we obtain almost the
max(2/5,8/15,15/30,55/60) = 0.91 whereas samea both in the synchronous and in the asynchronous

cases. This is due to the fact that at small load the worst[8] M. Grenier, J. Goossens, and N. Navet. Near-optimal fixed
case response times of the tasks are less influenced by the
release times of other tasks. As the load increases, the gain

increases and reaches a maximumléf3% for U = 0.95.

Over the loadU = 0.95, the gain steadily decreases when [g

U tends tol anda tends tol. At high loads, the worst case
response time of a task tends to its period and thisnds

to 1. In this latter case, the improvement obtained with ou
asynchronous scenario becomes less significant.

6. Conclusion

T10]

In this paper, we have studied the sensitivity of thellll

deadlines for periodic tasks when the tasks are scheduled

with the Deadline Monotonic scheduling. We have consid-
ered a specific asynchronous task set and harmonic taskgp]

The asynchronous scenario we consider makes it possible

to significantly reduce the complexity of the worst case
response time computation. We have then considered t
Mesoid approach to compute the worst case response time

a task in an asynchronous scenario. We have used the Mesoid

approach to compute the minimum deadline reduction factor.
We have proved by extensive simulations that the gain id14]
terms of deadline reduction can reath 3% with our par-
ticular asynchronous scenario compared to the synchrono $5]
scenario. This makes it possible to better control therijitte
of the tasks when considering control loops.

]

(16]

References

(1]

S. Baruah, R. Howell, and L. Rosier. Algorithms and
complexity concerning the preemptive scheduling of pedod

real-time tasks on one process&eal-Time System¥ol. 2, (17]
pp. 301-324, 1990.

[2] K. Tindell, A. Burns, and A. J. Wellings. Analysis of hard
real-time communications.Real-Time Systemd/ol. 9, pp. [18]

(3]

147-171, 1995.

L. George, N. Rivierre, and M. Spuri. Preemptive and

non-preemptive scheduling real-time uniprocessor sdivegiu ~ [19]
INRIA Research RepgriNo. 2966, September 1996.

[4] Giorgio Buttazzo Enrico Bini, Marco Di Natale. Sensitiv
Analysis for Fixed-Priority Real-Time SystemBroceedings [20]

(5]

(6]

(7]

of the 18th Euromicro Conference on Real-Time Systems
(ECRTS'06) Dresden, Germany July 5-7, 2006.

Ismael Ripoll Patricia Balbastre and Alfons Crespo. i@yt
deadline assignment for periodic real-time tasks in dywcami
priority systems.Proceedings of the 18th Euromicro Confer-
ence on Real-Time Systems (ECRTS'@8gsden, Germany
July 5-7, 2006.

E. Bini and G. Buttazzo. The Space of EDF Feasible

Deadlines. Proceedings of the 19th Euromicro Conference
on Real-Time Systems (ECRTS,(Hisa, Italy July 4-6 2007.

time system.BCS Comp. Jour.29(5), pp. 390-395,, 1986.

(21]

(22]

(23]

M. Joseph and P. Pandya. Finding response times in a real-

priority preemptive scheduling of offset free systenf&oc.
of the 14th International Conference on Network and Systems
(RTNS’2006) Poitiers, France, May 30-31, 2006 2006.

Giorgio Buttazzo Enrico Bini. Schedulability Analysisf
Periodic Fixed Priority Systems.|EEE Transactions On
Computers, Vol. 53, No. 1Nov.2004.

J.P. Lehoczky. Fixed priority scheduling of periodask sets
with arbitrary deadlines.Proceedings 11th IEEE Real-Time
Systems Symposiupp 201-209, Dec. Lake Buena Vista, FL,
USA, 1990.

J. Y. T. Leung and M.L. Merril. A note on premptive schédu
ing of periodic, Real Time TaskslInformation Processing
Letters Vol 11, num 3, Nov. 19980.

Annie Choquet-Geniet and Emmanuel Grolleau. Minimal
schedulability interval for real-time systems of periothisks
with offsets. Theor. Comput. S¢i310(1-3):117-134, 2004.

N. C. Audsley. Optimal priority assignment and feakijpiof
static priority tasks with arbitrary start timedept. Comp.
Science Report YCS 164, University of YAr@91.

J. Goossens. Scheduling of offset free systemReal-Time
Systems24(2):239-258, March 2003.

G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day.
Real-Time Systems, 29, 5;Z805.

P. Meumeu and Y. Sorel. Extending rate monotonic aiglys
with exact cost of preemptions for hard real-time systems.
In Proceedings of 19th Euromicro Conference on Real-Time
Systems, ECRTS'QPisa, Italy, July 2007.

S. Baruah, A. K. Mok, and L. Rosier. Preemptively scHatiu
hard real-time sporadic tasks on one processwvoceedings
of the 11th Real-Time Systems Symposjpm182-190, 1990.

L. C. Liu and W. Layland. Scheduling algorithms for niult
programming in a hard real time environmendournal of
ACM, Vol. 20, No 1, pp. 46-61, January 1973.

J. GoossensScheduling of Hard Real-Time Periodic Systems
with Various Kinds of Deadline and Offset ConstrainBhD
thesis, Université Libre de Bruxelles, 1998.

C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environmedournal
of the ACM 1973.

A.K. Mok S.K. Baruah and L.E. Rosier. Preemptively
scheduling hard realtime sporadic tasks on one proce#sor.
proc. 11th IEEE Real-Time Systems Symposil®80.

Joseph Y.-T. Leung and M. L. Merrill. A note on preemptiv
scheduling of periodic, real-time taskimformation Process-
ing Letters 1980.

J. Leung and Whitehead J. On the complexity of fixed-
priority scheduling of periodic real-time task®erformance
Evaluation(4) 1982.

